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CONTINUUM THEORY OF DISLOCATION LOOPS

TAl TE Wu
Division of Engineering, Brown University, Providence, Rhode Island

Abstract-For dislocation loops, the zeroth moment of dislocation strength always vanishes so that the first
moment must be defined in order to give a continuum description. A second order tensor is thus introduced
to account for the dislocation moment. This physical quantity contains more information than the macroscopic
plastic strain. Its connection with the mathematical theory of slip is illustrated.

1. INTRODUCTION

THE continuum theory of dislocations has received much attention recently, and a review
of this theory can be found in de Wit [1] and Bilby's [2] articles. Kroupa [3], Kroner [4]
and Mura [5] have studied dislocation loops. It is the purpose of the present paper to
give a more detailed account of these loops so that relations between the dislocation
network and the gross plastic strain may be established without enumerating the number
of loops.

2. REVIEW OF PREVIOUS WORK

Around any dislocation line, draw an arbitrary circuit by connecting lattice points.
Also, pick any point in a perfect crystal and draw a similar circuit. In Fig. 1, an edge
dislocation is shown, and the circuits are indicated by (1,2, ... , 8,1') and (1,2, ... , 8, 1)
respectively. The vector joining 1 and l' is known as the Burger's vector bi' Let the
physical scales be roughly indicated as follows:

(a) interatomic distance ,.., 10 A,
(b) interdislocation distance ,.., 103 A,
(c) macroscopic 'point' ,.., lOS A, and
(d) specimen size ,.., 108 A.

Then, the circuit has a size between (a) and (b).
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The first attempt in the continuum theory of dislocations is to consider a scale between
(b) and (c). Draw a similar but much larger circuit than these shown in Fig. 1, which
may be broken into many small ones encircling individual dislocations. If we designate
the Burger's vector associated with the large circuit as B;, then

B. = "b!n)r 1..J l , (1)

where n indicates the nth dislocation. We can go to the continuum approximation by
conjecturing that

Bi = f. dui ,
e

(2)

where C indicates the large circuit, and dU j is the differential displacement. If B j is not
identically zero, Uj is discontinuous, but note that this is not the usual macroscopic
displacement. Certain formal manipulations have been performed by defining a con
tinuous lattice deformation in the configurational space [1], [2]. Let the specimen be
cut by a plane denoted by Sj and draw a close circuit C in this plane. The quantity defined
by equation (2) is presumably measurable physically, so that the tensor IX ij is defined by

B j = fIXij dSj . (3)

In physical reality, as shown by X-ray micrographs [6], [7], the dislocations are
generally in the form of loops. Therefore, in equation (1), 'for each b!"l, there is a blml

which cancels bln) ; or in general, as long as there is no loose end present in the dislocation
network, B j = 0. Thus, in the subsequent analysis, we shall take B j == 0, so that U j IS

single valued in the macroscopic sense where a point has a size of scale (e).

3. DESCRIPTION OF THE LOOPS

Since B j == 0, in the continuum theory, it is required to define another quantity in
order to give some information about the dislocation network. Define

Hjj = ~tXj du j , (4)

where A is the area enclosed by C, and xj the coordinate vector. Since U j is single valued,
dU j = Uj,j dxj , so that equation (4) gives

H .. = ~ i x,u'k dxkJI A J I,

e

= ~ f ElhJXjUj,k),h dS,

= ~fE'jkUj,k dS, (5)

where Eljk is the permutation tensor.
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Define a third rank tensor (}kji, the dislocation moment density tensor, as

H ji = ~J(}kji dSk , (6)

so that

(7)

Equation (7) can be inverted to give

(8)

Physically, consider a piece of single crystal subjected to plastic deformation under
simple tension and then unloaded. A dislocation network has thus been introduced,
or more precisely, the virgin network has been altered. Then, -according to equation (8),
the plastic strain is defined as

sf. = lJu. . + u ..)IJ 2\ t.} j,t

= ¥€klj(}kli + €kli(}kl).

(9)

It is therefore required to find ()kji by direct physical measurements. In fact, this third
order tensor contains some information of the loading history which is not specified
by e~ measurements.

In equation (4), the definition of H j ; involves a contour C. Therefore, we must require
that for a given dislocation network enclosed by C, H ji should be contour independent
as long as A is fixed. Consider an analogous situation in statics. Let a plate be subjected
to a concentrated normal force Fi . Draw a contour K around it, and denote the differential
force per unit length on the edge of the contour as d/;. Then,

and

f d/; = F;,
K

(10)

(11)

where Xk is measured from the point of application of F i • The requirement of equation (11)
is very similar to what is needed in the present continuum theory of dislocation loops.
In equation (2), we may imagine the procedure of breaking C into many small contours
each of which encircles one dislocation. From the contours in Fig. 1, we get

f duo = bIn)
I I'

en
(12)

where Cn is the contour around the nth dislocation. Equation (12) is similar to
equation (10). Therefore, similar to equation (11), we shall demand that

f x j dUj = 0, (13)JCn

where x j is measured from the center of the dislocation. Equation (13) indeed makes
Hji a physically meaningful quantity; however, it is only a conjecture that equation (13)
should hold.
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In Fig. 2, one dislocation loop is shown. By (13),

f Xj du; = J (Xj +Yj) du;
c, c,

= Xj f du;.
c,

(14)

--- ---T

FIG. 2.

Therefore, in this case,

Cz

(15)

(16)

where aj is the vector between the two dislocations. A fixed convention is required to
define its direction, just as in the case of Burger's vector. In general

H .. = ! L a\n)b\n)
Jl A n J I'

4. AN EXAMPLE

From equations (6) and (16), we can construct the (}kj; for the slip theory. (Fig. 3.)
The loop is made of two straight edge dislocations, and the Burger's vector is assumed
to coincide with the direction of slip specified by mIt) for the rth system. Let 1; be the
normal to the cutting plane, and nIt) be the normal to the rth slip plane. Then,

FIG. 3.

(17)
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where Y. is the amount of slip of the tth system. Substituting equation (17) into
equation (9) gives

(18)

which reproduced slip theory [8].

5. CONCLUSION

A precise meaning of the dislocation loop is given in the continuum theory, so that
it is possible to .relate dislocation movement to the macroscopic slip theory. The quantity
H jj is in p'rinciple measurable physically, so that for a given deformed crystal, a more
refined quantity than the gross plastic strain is known. Plasticity rules may then be
formulated in greater detail.
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Resume--Oans les boucles de dislocation Ie moment au zero de la force de dislocation disparait toujours, de
sorte que Ie moment d'origine doit etre defini de maniere a assurer la continuite. L'auteur introduit ainsi un
tenseur du.deuxieme ordre faisant intervenir Ie moment de dislocation. Cette quantite physique donne plus
d'informations que la deformation plastique macroscopique. L'auteur fait apparaitre sa liaison avec la theorie
mathematique du glissement.

AIIHOT8....,.-,D:nll neTenb CMeweHHlI HyneBoA MOMeHT CHnbl CM~weHHlI BcerAa HC'Ie3aeT, TaK 'ITO He

06XOAHMO onpeAenHTb nepBblA MOMeHT, 'IT06bl AaTb KOHTHHyyMHoe onHcaHHe. TaKHM 06pa30M, BHeeeH

TeH30p BToporo nopliAKa, 'lT06bl y'leeTb MOMeHT CMeweHHlI. 3Ta cjIH3H'IeeKali BenH'IHHa COAeplKHT

6om.we HHcjIopMaI.\HH. 'IeM MaKpOCKOnH'IeeKali nnaCTH'IeeKali AecjlopMal.\HlI. nOKa3aHa ee CB1I3b C MaTe·

MaTH'IeeKoA TeopHeA CABHra.


