Int. J. Solids Structures, 1965, Vol. 1, pp. 371 to 375. Pergamon Press Ltd. Printed in Great Britain

CONTINUUM THEORY OF DISLOCATION LOOPS

Talr TE Wu

Division of Engineering, Brown University, Providence, Rhode Island

Abstract—For dislocation loops, the zeroth moment of dislocation strength always vanishes so that the first
moment must be defined in order to give a continuum description. A second order tensor is thus introduced
to account for the dislocation moment. This physical quantity contains more information than the macroscopic
plastic strain. Its connection with the mathematical theory of slip is illustrated.

1. INTRODUCTION

THE continuum theory of dislocations has received much attention recently, and a review
of this theory can be found in de Wit [1] and Bilby’s [2] articles. Kroupa [3], Kréner [4]
and Mura {5] have studied dislocation loops. It is the purpose of the present paper to
give a more detailed account of these loops so that relations between the dislocation
network and the gross plastic strain may be established without enumerating the number
of loops.

2. REVIEW OF PREVIOUS WORK

Around any dislocation line, draw an arbitrary circuit by connecting lattice points.
Also, pick any point in a perfect crystal and draw a similar circuit. In Fig. 1, an edge
dislocation is shown, and the circuits are indicated by (1,2,...,8,1°) and (1,2,...,8,1)
respectively. The vector joining 1 and 1’ is known as the Burger’s vector b, Let the
physical scales be roughly indicated as follows:

(a) interatomic distance ~ 10A,

(b) interdislocation distance ~ 103 A,

(c) macroscopic ‘point’ ~ 10°A, and

(d) specimen size ~ 108 A.
Then, the circuit has a size between (a) and (b).
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The first attempt in the continuum theory of dislocations is to consider a scale between
(b) and (c). Draw a similar but much larger circuit than these shown in Fig. 1, which
may be broken into many small ones encircling individual dislocations. If we designate
the Burger’s vector associated with the large circuit as B;, then

B, =) b", (1)

where n indicates the nth dislocation. We can go to the continuum approximation by
conjecturing that

B, = [ du, )

where C indicates the large circuit, and du; is the differential displacement. If B, is not
identically zero, u; is discontinuous, but note that this is not the usual macroscopic
displacement. Certain formal manipulations have been performed by defining a con-
tinuous lattice deformation in the configurational space [1], [2]. Let the specimen be
cut by a plane denoted by S; and draw a close circuit C in this plane. The quantity defined
by equation (2) is presumably measurable physically, so that the tensor a;; is defined by

Bi = aidej. (3)

In physical reality, as shown by X-ray micrographs [6], [7], the dislocations are
generally in the form of loops. Therefore, in equation (1), for each b\, there is a bi™
which cancels b ; or in general, as long as there is no loose end present in the dislocation
network, B; = 0. Thus, in the subsequent analysis, we shall take B; = 0, so that u; is
single valued in the macroscopic sense where a point has a size of scale (c).

3. DESCRIPTION OF THE LOOPS

Since B; = 0, in the continuum theory, it is required to define another quantity in
order to give some information about the dislocation network. Define

1
Hﬁ:Zj x; du;, (4)
C

where A is the area enclosed by C, and x; the coordinate vector. Since y; is single valued,
du; = u; ;dx;, so that equation (4) gives
J X ;5 dx,
C

H. =

Jt

NS

1
=7 end X Ui 1) .0 dS,

1
= _j‘eljkui,k ds, (5)

hN

where ¢;;, is the permutation tensor.
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Define a third rank tensor 6, ;;, the dislocation moment density tensor, as

Hﬁ = %jekji ds,, (6)
so that
Ouji = exjithi,- (7
Equation (7) can be inverted to give
U ;= %ekljgkli' (8)

Physically, consider a piece of single crystal subjected to plastic deformation under
simple tension and then unloaded. A dislocation network has thus been introduced,
or more precisely, the virgin network has been altered. Then, according to equation (8),
the plastic strain is defined as

ey = Houy; + uj)

: ©)
= #ew O+ enibia))-

It is therefore required to find 6,; by direct physical measurements. In fact, this third
order tensor contains some information of the loading history which is not specified
by &f; measurements.

In equation (4), the definition of H; involves a contour C. Therefore, we must require
that for a given dislocation network enclosed by C, H;; should be contour independent
as long as A is fixed. Consider an analogous situation in statics. Let a plate be subjected
to a concentrated normal force F;. Draw a contour K around it, and denote the differential
force per unit length on the edge of the contour as df;. Then,

[ 4 =F, (10)
K
and

jx’ei,.,‘xk df; = 0, (11)

where x, is measured from the point of application of F;. The requirement of equation (11)
is very similar to what is needed in the present continuum theory of dislocation loops.
In équation (2), we may imagine the procedure of breaking C into many small contours
each of which encircles one dislocation. From the contours in Fig. 1, we get

du,- = bgn), (12)

Cn

where C, is the contour around the nth dislocation. Equation (12) is similar to
equation (10). Therefore, similar to equation (11), we shall demand that

'[ x_, du,- = 0, (13)
Cn
where x; is measured from the center of the dislocation. Equation (13) indeed makes

H; a physically meaningful quantity; however, it is only a conjecture that equation (13)
should hold.
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In Fig. 2, one dislocation loop is shown. By (13),

j.cl x;dy; = Ll (X;+y;) dy;

(14)
= XJ c, du,- .
Therefore, in this case,
1
Hji = Zajbi, (15)

where a; is the vector between the two dislocations. A fixed convention is required to
define its direction, just as in the case of Burger’s vector. In general

1

4. AN EXAMPLE

From equations (6) and (16), we can construct the 6,; for the slip theory. (Fig. 3.)
The loop is made of two straight edge dislocations, and the Burger’s vector is assumed
to coincide with the direction of slip specified by m® for the tth system. Let I; be the
normal to the cutting plane, and n(® be the normal to the tth slip plane. Then,

Orji = V+€ jtk"ft)m?)- (17)

CUTTING
PLANE

SLIP
PLANE
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where y, is the amount of slip of the tth system. Substituting equation (17) into
equation (9) gives

of = X 400+ mPn?), (19)

which reproduced slip theory [8].

5. CONCLUSION

A precise meaning of the dislocation loop is given in the continuum theory, so that
it is possible to relate dislocation movement to the macroscopic slip theory. The quantity
Hj; is in principle measurable physically, so that for a given deformed crystal, a more
refined quantity than the gross plastic strain is known. Plasticity rules may then be
formulated in greater detail.
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Résumé—Dans les boucles de dislocation le moment au zéro de la force de dislocation disparait toujours, de
sorte que le moment d’origine doit &tre défini de maniére A assurer la continuité. L’auteur introduit ainsi un
tenseur du, deuxiéme ordre faisant intervenir le moment de dislocation. Cette quantité physique donne plus
d’informations que la déformation plastique macroscopique. L’auteur fait apparaitre sa liaison avec la théorie
mathématique du glissement.

Annoramms—/na nerenb cMelleHHs HyJ€BOK MOMEHT CHJIbI CMEUIEHHs BCETAa MCYE3aer, Tak YTO He-
06X0mUMO OnpeneaMTh NEPBHIH MOMEHT, YTOOH NaTh KOHTHHYYMHOE onucaHue, Takum o6pa3om, BHECEH
TEH30p BTOPOTO MNOPAAKA, YTOOBl YYeCTb MOMEHT CMeIleHMA. OTa (u3NyYecKas BEJMYMHA CONEPXKHT
Gonbuie uHpOPMaLIHH, YEM MaKpocKonuyeckas riacTuveckas nedopmanus. [MokaszaHa ee cBA3b C MaTe-
martnvecko#l Teopuelt caBura.



